skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Beraha, Mario"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We provide a novel statistical perspective on a classical problem at the intersection of computer science and information theory: recovering the empirical frequency of a symbol in a large discrete dataset using only a compressed representation, or sketch, obtained via random hashing. Departing from traditional algorithmic approaches, recent works have proposed Bayesian nonparametric (BNP) methods that can provide more informative frequency estimates by leveraging modeling assumptions about the distribution of the sketched data. In this paper, we propose a smoothed-Bayesian method, inspired by existing BNP approaches but designed in a frequentist framework to overcome the computational limitations of the BNP approaches when dealing with large-scale data from realistic distributions, including those with power-law tail behaviors. For sketches obtained with a single hash function, our approach is supported by rigorous frequentist properties, including unbiasedness and optimality under a squared error loss function within an intuitive class of linear estimators. For sketches with multiple hash functions, we introduce an approach based on multi-view learning to construct computationally efficient frequency estimators. We validate our method on synthetic and real data, comparing its performance to that of existing alternatives. 
    more » « less
    Free, publicly-accessible full text available June 24, 2026